High-Accuracy Photovoltaic Power Prediction under Varying Meteorological Conditions: Enhanced and Improved Beluga Whale Optimization Extreme Learning Machine
Wei Du,
Shi-Tao Peng,
Pei-Sen Wu
et al.
Abstract:Accurate photovoltaic (PV) power prediction plays a crucial role in promoting energy structure transformation and reducing greenhouse gas emissions. This study aims to improve the accuracy of PV power generation prediction. Extreme learning machine (ELM) was used as the core model, and enhanced and improved beluga whale optimization (EIBWO) was proposed to optimize the internal parameters of ELM, thereby improving its prediction accuracy for PV power generation. Firstly, this study introduced the chaotic mappi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.