Phosphate is widely used in industry and agriculture fields. However, excess accumulation of PO43− causes several adverse effects on the human body and ecological environment. Consequently, it is important to develop a simple method for the detection of PO43− concentration in the ecological environment and in vivo. Herein, two caffeic acid derivative-based fluorescence probes (BAM-HM and BAM-HH) were developed for the detection of phosphate. The BAM-HM probe could detect phosphate via fluorescence enhancement at 500 nm, with the detection limit being 0.612 µM. Meanwhile, the BAM-HH probe showed a significant turn-on signal at 450 nm after the addition of phosphate, and the detection limit was calculated to be 0.318 µM. The sensing mechanism was determined by 1H NMR and MS. Furthermore, the two probes (BAM-HM and BAM-HH) were applied for PO43−detection in living cells and water samples.