Background Heterogeneity exists in type 1 diabetes (T1D) development and presentation. Islet autoantibodies form the foundation for T1D diagnostic and staging efforts. We hypothesized that autoantibodies can be used to identify heterogeneity in T1D before, at, and after diagnosis, and in response to disease modifying therapies. at clinically relevant timepoints throughout T1D progression. Methods We performed a systematic review assessing 10 years of original research studies examining relationships between autoantibodies and heterogeneity during disease progression, at the time of diagnosis, after diagnosis, and in response to disease modifying therapies in individuals at risk for T1D or within 1 year of T1D diagnosis. Results 10,067 papers were screened. Out of 151 that met data extraction criteria, 90 studies characterized heterogeneity before clinical diagnosis. Autoantibody type/target was most commonly examined, followed by autoantibody number, titer, order of seroconversion, affinity, and novel islet autoantibodies/epitopes. Recurring themes included positive relationships of autoantibody number and specific types and titers with disease progression, differing clinical phenotypes based on the order of autoantibody seroconversion, and interactions with age and genetics. Overall, reporting of autoantibody assay performance was commonly included; however, only 43% (65/151) included information about autoantibody assay standardization efforts. Populations studied were almost exclusively of European ancestry. Conclusions Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before clinical diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly when considered in relation to age and genetic risk, could offer more precise stratification. Increased participation in autoantibody standardization efforts is a critical step to improving future applicability of autoantibody-based precision medicine in T1D.