Background: The identification of the molecular mechanisms of human immunodeficiency virus type 1, HIV-1, transcriptional regulation is required to develop novel inhibitors of viral replication. NF-κB transacting factors strongly enhance the HIV/SIV expression in both epithelial and lymphoid cells. Controversial results have been reported on the requirement of NF-κB factors in distinct cell reservoirs, such as CD4-positive T lymphocytes and monocytes. We have previously shown that IκB-αS32/36A, a proteolysis-resistant inhibitor of NF-κB, potently inhibits the growth of HIV-1 and SIVmac239 in cell cultures and in the SIV macaque model of AIDS. To further extend these observations, we have generated NL(AD8)IκB-αS32/36A, a macrophage-tropic HIV-1 recombinant strain endowed to express IκB-αS32/36A.