Abstract:Image steganography is a multipurpose-serving key emerging technology that is used for covertly transferring, storing, and governing various digital data, including intellectual properties and copyrights, social media data, multimedia data, and secrets of law-enforcing agencies. During the management in the stated information, nowadays, massive amounts of data are handled that require greater security. For that purpose, data are embedded into a cover image to hide them from any intruders. Nevertheless, the requirements of a larger embedding capacity, improved stego-image quality, and reduced time complexity is increasing. In this paper, the authors have presented a novel data-embedding scheme where the prediction error-based data-hiding scheme is modified in an intricate way so that all the image pixels can accept secret bits. A distance matrix between the pixel values of each image block and a reference value are measured first. Thereafter, the distances are encoded into two states: 1 and −1. That encoding process enables the scheme to implant one bit in every pixel of the cover image. During the bit implantation, the errors 1 and −1 are modified by shifting them to the right and left directions, respectively. This strategy enhances the embedding capacity by a factor of more than 2. The use of reference values reduces the computational complexity notably, and in the meanwhile increases the security and robustness of the scheme because the reference values are not open to any third party. The scheme also reduces the time complexity by 2-16 times with compared to its competing schemes. Experimental results prove the superiority of the proposed algorithm on embedding capacity, visual quality, and time complexity compared to the current well-accepted existing schemes.