Joining dissimilar materials to achieve lightweight design and energy efficiency has been increasingly popular. A joint formed by components of particle-reinforced metal and polymer matrix composite combines the merits of both materials. This paper is mainly focused on the research of the tensile lap shear and impact behavior of the dissimilar single-lap joints (SLJs) between SiCp/AA2124 composite and glass fiber-reinforced polypropylene (PP). The effects of out-of-plane loading applied from different surfaces of SLJs on impact responses are evaluated. Hot pressing technique is introduced to manufacture metal/polymer assembly without using any adhesive. The hole drilling effect is investigated with the idea that it may provide weight reduction and also increase the strength of the dissimilar SLJs. The results indicate that the dissimilar SLJs show more Charpy impact strength when the impact is performed on the metal-matrix composite (MMC). Mechanical properties of SLJs are adversely affected by a drilled hole in the MMC adherend.