We have been studying long-lifetime helicon plasma thrusters as the Helicon Electrodeless Advanced Thruster (HEAT) project. Two important elements of the proposed helicon plasma thruster are a generation of a dense source plasma using a helicon wave, and an acceleration of the plasma by the Lorentz force using the product of the induced azimuthal current and static radial magnetic field. Here, in order to eliminate damage of electrodes, both generation and acceleration schemes are operated in non-contact condition between the plasma and electrodes. Acceleration schemes use two type of coils: rotating magnetic field coils and azimuthal mode number m = 0 ones. These studies have been carried out on the Large Mirror Device (LMD), which has two types the magnetic field source, permanent magnets and electromagnets, and the Small Helicon Device (SHD), which has small diameter discharge tubes. In this paper, current performances of acceleration schemes are reported.