Research in chemistry increasingly requires interdisciplinary work prompted by, among other things, advances in computing, machine learning, and artificial intelligence. Everyone working with molecules, whether chemist or not, needs an understanding of the representation of molecules in a machinereadable format, as this is central to computational chemistry. Four classes of representations are introduced: string, connection table, feature-based, and computer-learned representations. Three of the most significant representations are simplified molecular-input line-entry system (SMILES), International Chemical Identifier (InChI), and the MDL molfile, of which SMILES was the first to successfully be used in conjunction with a variational autoencoder (VAE) to yield a continuous representation of molecules. This is noteworthy because a continuous representation allows for efficient navigation of the immensely large chemical space of possible molecules. Since 2018, when the first model of this type was published, considerable effort has been put into developing novel and improved methodologies. Most, if not all, researchers in the community make their work easily accessible on GitHub, though discussion of computation time and domain of applicability is often overlooked.Herein, we present questions for consideration in future work which we believe will make chemical VAEs even more accessible.