Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fast mixing of random walks on hypergraphs (simplicial complexes) has led to myriad breakthroughs throughout theoretical computer science in the last five years. On the other hand, many important applications (e.g. to locally testable codes, 2-2 games) rely on a more general class of underlying structures called posets, and crucially take advantage of non-simplicial structure. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different poset architectures in both a spectral and combinatorial sense, highlighting how regularity controls the spectral decay and edge-expansion of corresponding random walks.We show that the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha APPROX-RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the regularity of the underlying poset. This gives a simple condition to identify poset architectures (e.g. the Grassmann) that exhibit strong (even exponential) decay of eigenvalues, versus architectures like hypergraphs whose eigenvalues decay linearly-a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight characterization of edge-expansion on expanding posets in the ℓ2-regime (generalizing recent work of Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization of expansion used in the proof of the 2-2 Games Conjecture which relies on ℓ8 rather than ℓ2-structure.
Fast mixing of random walks on hypergraphs (simplicial complexes) has led to myriad breakthroughs throughout theoretical computer science in the last five years. On the other hand, many important applications (e.g. to locally testable codes, 2-2 games) rely on a more general class of underlying structures called posets, and crucially take advantage of non-simplicial structure. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different poset architectures in both a spectral and combinatorial sense, highlighting how regularity controls the spectral decay and edge-expansion of corresponding random walks.We show that the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha APPROX-RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the regularity of the underlying poset. This gives a simple condition to identify poset architectures (e.g. the Grassmann) that exhibit strong (even exponential) decay of eigenvalues, versus architectures like hypergraphs whose eigenvalues decay linearly-a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight characterization of edge-expansion on expanding posets in the ℓ2-regime (generalizing recent work of Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization of expansion used in the proof of the 2-2 Games Conjecture which relies on ℓ8 rather than ℓ2-structure.
We introduce and study swap cosystolic expansion, a new expansion property of simplicial complexes. We prove lower bounds for swap coboundary expansion of spherical buildings and use them to lower bound swap cosystolic expansion of the LSV Ramanujan complexes. Our motivation is the recent work (in a companion paper) showing that swap cosystolic expansion implies agreement theorems. Together the two works show that these complexes support agreement tests in the low acceptance regime.Swap cosystolic expansion is defined by considering, for a given complex X, its faces complex F r X, whose vertices are r-faces of X and where two vertices are connected if their disjoint union is also a face in X. The faces complex F r X is a derandomizetion of the product of X with itself r times. The graph underlying F r X is the swap walk of X, known to have excellent spectral expansion. The swap cosystolic expansion of X is defined to be the cosystolic expansion of F r X.Our main result is a exp(−O( √ r)) lower bound on the swap coboundary expansion of the spherical building and the swap cosystolic expansion of the LSV complexes. For more general coboundary expanders we show a weaker lower bound of exp(−O(r)).
The classical hypercontractive inequality for the noise operator on the discrete cube plays a crucial role in many of the fundamental results in the Analysis of Boolean functions, such as the Kahn-Kalai-Linial theorem, Friedgut’s junta theorem and the invariance principle of Mossel, O’Donnell and Oleszkiewicz. In these results the cube is equipped with the uniform ( 1 / 2 1/2 -biased) measure, but it is desirable, particularly for applications to the theory of sharp thresholds, to also obtain such results for general p p -biased measures. However, simple examples show that when p p is small there is no hypercontractive inequality that is strong enough for such applications. In this paper, we establish an effective hypercontractivity inequality for general p p that applies to ‘global functions’, i.e. functions that are not significantly affected by a restriction of a small set of coordinates. This class of functions appears naturally, e.g. in Bourgain’s sharp threshold theorem, which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthening Bourgain’s theorem, making progress on two conjectures of Kahn and Kalai (both these conjectures were open when we arXived this paper in 2019; one of them was solved in 2022; the other is still open), and proving a p p -biased analogue of the seminal invariance principle of Mossel, O’Donnell, and Oleszkiewicz. In this 2023 version of our paper we will also survey many further applications of our results that have been obtained by various authors since we arXived the first version in 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.