Smart textiles are flexible materials with interactive capabilities such as sensing, actuation, and computing, and in recent years have garnered considerable interest. Shape-memory alloy (SMA) wire is a well-suited for smart textiles due to its high strength, small size, and low mass. However, the contraction of SMA wire is low, limiting its usefulness. One solution to increasing net contraction is to use a long SMA wire and guide it inside a tube that is wound back and forth or coiled inside a smart textile. In this article, we characterize the performance of tube-guided SMA wire actuators. We investigate the effect of turn radius and number of loops, showing that the stroke of an SMA-based system can be improved by up to 69.81% using the tube-guided SMA wire actuator concept. Finally, we investigate how tube-guided SMA wire actuators can be lubricated to improve their performance. Coarse graphite powder and tungsten disulfide lubricant both delivered improvements in stroke compared with an unlubricated system.