Respiratory tract infections cause 90% of premature mortality in patients with cystic fibrosis (CF). Treatment of Pseudomonas aeruginosa infection is often very problematic. Piperacillin-tazobactam has good activity against P. aeruginosa, but its pharmacokinetics (PK) in CF patients has not been compared to the PK in healthy volunteers in a controlled clinical study. Therefore, we compared the population PK and pharmacodynamics (PD) of piperacillin between CF patients and healthy volunteers. We studied 8 adult (median age, 20 years) CF patients (average total body weight [WT], 43.1 ؎ 7.8 kg) and 26 healthy volunteers (WT, 71.1 ؎ 11.8 kg) who each received 4 g piperacillin as a 5-min intravenous infusion. We determined piperacillin levels by high-performance liquid chromatography, and we used NONMEM for population PK and Monte Carlo simulation. We used a target time of nonprotein-bound concentration above the MIC of 50%, which represents near-maximal bacterial killing. Unscaled total clearance was 25% lower, and the volume of distribution was 31% lower in CF patients. Allometric scaling by lean body mass reduced the unexplained (random) betweensubject variability in clearance by 26% compared to the variability of linear scaling by WT. A standard dosage regimen of 3 g/70 kg body WT every 4 h as a 30-min infusion (daily dose, 18 g) achieved a robust (>90%) probability-of-target attainment (PTA) for MICs of <12 mg/liter in CF patients and <16 mg/liter in healthy volunteers. Alternative modes of administration allowed a marked dose reduction to 9 g daily. Prolonged (4-h) infusions of 3 g/70 kg WT every 8 h and continuous infusion (daily dose, 9 g), achieved a robust PTA for MICs of <16 mg/liter in both groups. Piperacillin achieved PTA expectation values of 64% and 89% against P. aeruginosa infection in CF patients, based on susceptibility data from two German CF clinics.