In this paper, a gain-increased method of cavity-backed slot antennas based on excitation of high-order substrate-integrated waveguide cavity resonance has been proposed. To this end, the metallic posts are introduced in a main cavity to excite the cavity's TM220 mode. Then the properties of the modified cavity's TM220 mode are used to feed an array of 2 × 2 slot antenna. Moreover, to acquire insight of modified cavity's field distribution, a comprehensive modal study was performed on the modified cavity to fully understand the effects of the dividing walls on the cavity's field distribution. Also, compared with HFSS, the modal solution that is proposed in this paper provide a considerable time and storage saving. To validate the simulated results, two types of the proposed antenna forming two different polarizations (horizontal and vertical) are analyzed, simulated, and fabricated. The proposed antennas exhibit relatively gain of 8.2 dBi at resonant frequency and high front-to-back ratio. In addition, the gain-enhanced method proposed in the present paper can be extended for using even higher-order cavity resonances, such as TM440, TM660 etc., if higher gain is desirable. The proposed antennas are suitable for using in many wireless communication systems and some radar systems.