As one of the most important phosphorescent emitters, tetradentate cyclometalated platinum(II) complexes have attracted much attention in recent years, because of the high luminescent efficiency, emission spectra, and color tuned easily, especially for the development of high-efficient deep-blue and "pure" blue emitters and single-doped white organic light-emitting diodes (OLEDs). Also, some platinum(II)-based OLEDs exhibited superior operational stability, indicating their potentials in full-color display and solidstate lighting applications. In this chapter, we will introduce the recent advances of the tetradentate cyclometalated platinum(II) complexes, including pyrazole, N-heterocyclic carbene, imidazole and pyridine-based complexes, molecular design, photophysical properties, and some of their device performances.From the spin statistics, it is well known that the singlet and triplet in the electrogenerated excitons are 25 and 75%, respectively [3]. As a result, OLEDs using fluorescent emitters, which emit from the singlet excited state, can achieve a peak internal quantum efficiency (IQE) only 25%. However, if heavy metal ion is incorporated into the organic ligand, phosphorescent emitters can break the spin-forbidden reactions, and fast intersystem crossing (IC) from singlet to triplet state can occur owing to the strong electron spin-orbit coupling (SOC); thus, heavy metal complexes have the potential to harvest both the electrogenerated singlet and triplet excitons and achieve 100% IQE. In 1998, Forrest and Thompson et al. and Che et al. first reported the electrogenerated phosphorescent platinum(II) [4] and osmium(II) [5] complexes, respectively. Afterward, more heavy metal complexes were found to be used as efficient phosphorescent materials, like iridium(III), ruthenium(II), palladium (II), rhodium (III), gold(III), and so on, and some reviews about these complexes have been published [6][7][8][9][10][11][12][13][14][15][16][17][18]. Among them, iridium(III) complexes have been most widely studied. Green and red phosphorescent iridium(III) emitters developed by Universal Display Corporation (UDC) have been successfully commercialized due to their superior efficiency and long operational lifetime. OLED display doped these emitters that have been adopted for several types of high-end personal electronics, such as Samsung Galaxy, LG OLED television, Apple smart watch, and iPhone X. Compared with the liquid crystal display (LCD), OLED display have many outstanding merits, such as low-cost fabrication methods, high color quality, and high-luminance efficiency and also many advantages of low power consumption, wide-viewing angle, wide temperature range, fast response, etc [19,20]. Thus, OLED has been widely considered as the next generation of full-color display and solidstate lighting technologies.The development of high efficient and stable phosphorescent emitters is of the most importance for the development of OLEDs and their application. Although thousands of phosphorescent heavy metal complexes have ...