Blood glucose monitoring is essential to avoid the unwanted consequences of glucose level fluctuations. Optical monitors are of special interest because they can be non-invasive. Among optical glucose sensors, fluorescent upconversion nanoparticles (UCNPs) have the advantage of good photostability, low toxicity, and exceptional autofluorescence suppression. However, to sense glucose, UCNPs normally need surface functionalization, and this can be easily affected by other factors in biological systems, and may also affect their ability for real-time sensing of both increasing and decreasing glucose levels. Here, we report YVO4 : Yb3+, Er3+@Nd3+core/shell UCNPs with Nd and Yb shell and GdVO4 : Yb3+, Er3+@Nd3+ core/shell UCNPs with Nd and Yb shell that show sensitive, reversible, and selective optical glucose detection without the need for any surface functionalization or modifications.
Disciplines
Biology and Biomimetic Materials | Biomechanical Engineering | Mechanical EngineeringComments Abstract: Blood glucose monitoring is essential to avoid the unwanted consequences of glucose level fluctuations. Optical monitors are of special interest because they can be non-invasive. Among optical glucose sensors, fluorescent upconversion nanoparticles (UCNPs) have the advantage of good photostability, low toxicity, and exceptional autofluorescence suppression. However, to sense glucose, UCNPs normally need surface functionalization, and this can be easily affected by other factors in biological systems, and may also affect their ability for real-time sensing of both increasing and decreasing glucose levels. Here, we report YVO 4 : Yb 3+ , Er 3+ @Nd 3+ core/shell UCNPs with Nd and Yb shell and GdVO 4 : Yb 3+ , Er 3+ @Nd 3+ core/shell UCNPs with Nd and Yb shell that show sensitive, reversible, and selective optical glucose detection without the need for any surface functionalization or modifications.