BACKGROUND: Catalytic transformation of bio-oil into higher olefins can provide valuable bio-fuels and chemicals used in the manufacture of high-octane gasoline, detergents, plasticizers and other petrochemicals. This work explores the production of higher olefins from bio-oil through catalytic cracking of bio-oil along with light olefins oligomerization.
RESULTS: For bio-oil catalytic cracking, the olefins yield reached 43.8 C-mol% with near-complete bio-oil conversion. The oxygenated organic compounds in bio-oil go through deoxygenation, cracking and hydrogen transfer reactions and form light olefins over the zeolite acid sites. For the oligomerization of light olefins, the highest selectivity and yield of C 5+ olefins over the LTGO catalyst reached 85.4 C-mol% and 326.7 g kg −1 cata h −1 , respectively. Main products below 300 • C were C 6 = -C 12 = olefins, originating from light olefin oligomerization. The influences of the reaction conditions were investigated in detail, and the reaction mechanism was addressed.CONCLUSION: Bio-oil can be catalytically converted to C 2 = -C 4 = light olefins over HZSM-5, and further selectively transformed to C 5 + high olefins via the oligomerization of light olefins over LTGO. The transformation of bio-oil to higher olefins may be useful for the production of bio-fuels and high value chemicals using renewable biomass.