There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions. batteries ͉ carbon nanotubes ͉ supercapacitor T here has been recent interest in flexible safe energy devices, based on supercapacitors and batteries, to meet the various requirements of modern gadgets (1-3). Electrochemical energy can be stored in two fundamentally different ways. In a battery, the charge storage is achieved by electron transfer that produces a redox reaction in the electroactive materials (3). In an electric double-layer capacitor, namely the supercapacitor, the chargestorage process is nonFaradic, that is, ideally no electron transfer takes place across the electrode interface, and the storage of electric charge and energy is electrostatic. Because the charging and discharging of such supercapacitors involve no chemical phase and composition changes, such capacitors have a high degree of cyclability. However, in certain supercapacitors based on pseudocapacitance, the essential process can be Faradic, similar to that in a battery. However, an essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants (3). Now, with the demand for efficient power devices to meet the high-power and -energy applications, there seems to be the possibility of an ideal compromise, which combines some of the storage capabilities of batteries and some of the power-discharge characteristics of capacitors in devices capable of storing useful quantities of electricity that can be discharged very quickly. We address here this need to develop new integrated hybrid devices with adaptability in various thin-film as well as bulk applications by using...