The functionality and experimental performance characterization of the latest four channel version of ORION ASIC, a very low noise multichip read out and processing electronics customized for the X and Gamma Imaging Spectrometer (XGIS) instrument onboard the Transient High-Energy Sky and Early Universe Surveyor (THESEUS) mission, is presented. XGIS is a set of two coded-masked wide field deep sky cameras using monolithic SDDs (Silicon Drift Detectors) and CsI:Tl (Thallium doped-Cesium Iodide) scintillator-based X-γ ray detectors. This paper highlights the design, working principle and the expected performances of the XGIS, on a small scale 2×2 prototype. Furthermore, the evolution timeline of different versions of ORION with detailed performance observations and analysis for spectroscopic resolution, electronic noise and the operational linear energy ranges of both X and the γ processors of the four-pixel ASIC version bonded to a 2×2 SDD array are emphasized. Each 2×2 SDD array element is electrically and dimensionally equivalent to single elements of the THESEUS 8×8 SDD array.