2024
DOI: 10.1007/s12220-024-01637-2
|View full text |Cite
|
Sign up to set email alerts
|

High Energy Solutions for p-Kirchhoff Elliptic Problems with Hardy–Littlewood–Sobolev Nonlinearity

Divya Goel,
Sushmita Rawat,
K. Sreenadh

Abstract: This article deals with the study of the following Kirchhoff–Choquard problem: $$\begin{aligned} \begin{array}{cc} \displaystyle M\left( \, \int \limits _{{\mathbb {R}}^N}|\nabla u|^p\right) (-\Delta _p) u + V(x)|u|^{p-2}u = \left( \, \int \limits _{{\mathbb {R}}^N}\frac{F(u)(y)}{|x-y|^{\mu }}\,dy \right) f(u), \;\;\text {in} \; {\mathbb {R}}^N,\\ u > 0, \;\; \text {in} \; {\mathbb {R}}^N, \end{array} \end{aligned}$$ … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?