2019
DOI: 10.1016/j.jeurceramsoc.2019.02.022
|View full text |Cite
|
Sign up to set email alerts
|

High-entropy environmental barrier coating for the ceramic matrix composites

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
88
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 212 publications
(91 citation statements)
references
References 48 publications
1
88
0
2
Order By: Relevance
“…In addition to two major classes high-entropy UHTCs (discussed above) that have been extensively studied in the last a few years, high-entropy nitrides [67], silicides [44,45], sulfides [98], fluorides [99], aluminides [43], hexaborides [100], carbonitrides [101], and aluminosilicides [38] have been fabricated. In the broader families of oxide-related HECs, the fabrication of high-entropy magnetoplumbites [87,102], zeolitic imidazolate frameworks [103], ferrites [104], phosphates [18,105], monosilicates [19,20], disilicates [106], and metal oxide nanotube arrays [107] have been reported. Medium-and high-entropy Compositionally Complex thermoelectrics have also been explored [40][41][42].…”
Section: Graphical Abstractmentioning
confidence: 99%
“…In addition to two major classes high-entropy UHTCs (discussed above) that have been extensively studied in the last a few years, high-entropy nitrides [67], silicides [44,45], sulfides [98], fluorides [99], aluminides [43], hexaborides [100], carbonitrides [101], and aluminosilicides [38] have been fabricated. In the broader families of oxide-related HECs, the fabrication of high-entropy magnetoplumbites [87,102], zeolitic imidazolate frameworks [103], ferrites [104], phosphates [18,105], monosilicates [19,20], disilicates [106], and metal oxide nanotube arrays [107] have been reported. Medium-and high-entropy Compositionally Complex thermoelectrics have also been explored [40][41][42].…”
Section: Graphical Abstractmentioning
confidence: 99%
“…学的 Cantor 和印度科学研究所的 Ranganathan 各自 独立提出 [1][2][3] ,目前已成为国内外材料学术界的研究 热点之一。基 于 高 熵 理 念 诞 生 的 高 熵 合 金 材料 (HEAs),以其热力学上的高熵效应、动力学上的 迟缓扩散效应、结构上的晶格畸变效应及性能上的 鸡尾酒效应 [4] ,展现出许多传统材料无法比拟的优 异性能,如高强度、高硬度、耐腐蚀性、高氧化活 性及优异的电磁性能等 [5][6][7][8][9] ,有望成为解决目前工程 领域材料性能瓶颈问题的关键材料之一。 近年来,高熵设计理念逐渐拓展到高熵陶瓷研 究领域 [10][11] ,开发出诸多非氧化物高熵陶瓷和氧化 物高熵陶瓷。如周延春教授课题组开发的多孔高熵 碳化物陶瓷(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [12] ,骆建团队 开发的具有高硬度的 (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [13] 及张国军教授团队开发的具 有 密 排 六 方 结 构 的 (Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2 [14] 等高熵硅化物陶瓷, 以 及 具 有 较 好 力 学 性 能 的 高 熵 硼 化 物 (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 [15] 等非氧化物高熵陶瓷。 而氧化物高熵陶瓷则是由 Rost 等 [16] 于 2015 年首次 提出,并成功开发了一种由 5 种不同金属离子构成 的 具 备 岩 盐 结 构 的 单相高熵陶瓷 (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, 为设计复杂的多组分氧 化物陶瓷开辟了新的途径。尽管最初对氧化物高熵 陶瓷(HEOs)的工作主要集中在岩盐结构上,但目 前已相继开发出了许多其他结构的氧化物高熵陶瓷 材料 [17][18][19][20][21][22] 。例如陈克丕教授课题组制备的具有萤石 结构的高熵陶瓷(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)O2 [18] ,张国 军教授团队开发的具有焦绿石结构的高 熵 陶 瓷 (5RE1/5)2Zr2O7 [22] ,Dabrowa 等 [19] 采用传统陶瓷工艺 首 次 开 发 的 尖 晶 石 结 构 的 高 熵 陶 瓷 (Co,Cr,Fe,Mn,Ni)3O4,以及 Sicong Jiang 等 [20] 合成的 具有钙钛矿结构的高熵陶瓷等等。 钙钛矿型( ABO3 结构)氧化物的晶体结构一般 由 12 配位的 A 位原子和 6 配位的 B 位原子以及氧 八面体组成。由于 A、B 位配位数较多,阳离子的 不同组合就会越多,不同的排列组合中会存在不同 尺寸的 A、B 位阳离子半径, 从而引起容忍因子 t 的 变化,产生晶格畸变,进而导致钙钛矿结构对称性 降低,使其表现出丰富的物理化学性质,在太阳能 电池、光催化、质子导体、介电、铁电和多铁 [23][24][25][26][27][28] 等方面应用前景广泛。基于此,Sicong Jiang 等 [20] 将 高熵理念延伸到钙钛矿型氧化物,成功制备了由 13 种阳离子组成的具有钙钛矿结构的高熵氧化物,并 结合容忍因子、原子尺寸差异和混合熵,分析了形 成高熵钙钛矿结构的条件,为钙钛矿结构的高熵氧 化物研究奠定了基础。在此基础上,Biesuz 等 [29] 探 究了常规烧结和等离子烧结工艺对钙钛矿结构 Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x 高熵陶瓷结 构和性能的影响。而 Sarkar 等 [17] 则成功合成了过渡 族金属和稀土元素组成的组元数高达 10 的钙钛矿 型高熵陶瓷(Gd, La, Nd, Sm, Y)(Co, Cr, Fe, Mn, Ni)O3, 证明阳离子随机分布,体系在循环热处理过程中表 现出从多相到单相的可逆转变,这一事实有力地证 实了在这些钙钛矿系统中存在熵驱动的结构稳定效 应。最近,蒲永平教授团队 ...…”
Section: 高熵理念由我国台湾学者叶均蔚、英国牛津大unclassified
“…29 High-entropy alloys and ceramics have improved not only mechanical properties compared to their constituents, but also reduced thermal conductivities due to cation disorder. 25,27,30,31 In particular, high-entropy fluorite oxides with rare-earth stabilizers, which have recently been synthesized by Gild et al 25 and Wright et al 32 appears to be a promising choice to begin the search for novel TBC or other protective coating materials due to their low thermal conductivity, higher resistance to sintering, and compositional and structural similarities compared to traditional YSZ. However, other relevant properties for qualifying them as protective coating materials, such as sand corrosion, thermal expansion, and ablation properties of a new class of high-entropy oxides, have not yet been tested.…”
Section: Introductionmentioning
confidence: 99%