High entropy oxides (HEOs) constitute a promising class of materials with possibly new and largely unexplored properties. The virtually infinite variety of compositions (multi-element approach) for a single-phase structure allows the tailoring of their physical properties and enables unprecedented materials design. Nevertheless, this level of versatility renders their characterization as well as the study of specific processes or reaction mechanisms challenging. In the present work, we report the structural and electrochemical behavior of different multi-cationic HEOs. Phase transformation from spinel to rock-salt was observed upon incorporation of monovalent Li+ ions, accompanied by partial oxidation of certain elements in the lattice. This transition was studied by X-ray diffraction, inductively coupled plasma-optical emission spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and attenuated total reflection infrared spectroscopy. In addition, the redox behavior was probed using cyclic voltammetry. Especially, the lithiated rock-salt structure HEOs were found to exhibit potential for usage as negative and positive electrode materials in rechargeable lithium-ion batteries.