Multicomponent materials may exhibit favorable Li‐storage properties because of entropy stabilization. While the first examples of high‐entropy oxides and oxyfluorides show good cycling performance, they suffer from various problems. Here, we report on side reactions leading to gas evolution in Li‐ion cells using rock‐salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O (HEO) or Li(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)OF (Li(HEO)F). Differential electrochemical mass spectrometry indicates that a robust solid‐electrolyte interphase layer is formed on the HEO anode, even when using an additive‐free electrolyte. For the Li(HEO)F cathode, the cumulative amount of gases is found by pressure measurements to depend strongly on the upper cutoff potential used during cycling. Cells charged to 5.0 V versus Li+/Li show the evolution of O2, H2, CO2, CO and POF3, with the latter species being indirectly due to lattice O2 release as confirmed by electron energy loss spectroscopy. This result attests to the negative effect that lattice instability at high potentials has on the gassing.