Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Summary Standard history-matching workflows use qualitative 4D seismic observations to assist in reservoir modeling and simulation. However, such workflows lack a robust framework for quantitatively integrating 4D seismic interpretations. 4D seismic or time-lapse-seismic interpretations provide valuable interwell saturation and pressure information, and quantitatively integrating this interwell data can help to constrain simulation parameters and improve the reliability of production modeling. In this paper, we outline technologies aimed at leveraging the value of 4D for reducing uncertainty in the range of history-matched models and improving the production forecast. The proposed 4D assisted-history-match (4DAHM) workflows use interpretations of 4D seismic anomalies for improving the reservoir-simulation models. Design of experiments is initially used to generate the probabilistic history-match simulations by varying the range of uncertain parameters (Schmidt and Launsby 1989; Montgomery 2017). Saturation maps are extracted from the production-history-matched (PHM) simulations and then compared with 4D predicted swept anomalies. An automated extraction method was created and is used to reconcile spatial sampling differences between 4D data and simulation output. Interpreted 4D data are compared with simulation output, and the mismatch generated is used as a 4D filter to refine the suite of reservoir-simulation models. The selected models are used to identify reservoir-simulation parameters that are sensitive for generating a good match. The application of 4DAHM workflows has resulted in reduced uncertainty in volumetric predictions of oil fields, probabilistic saturation S-curves at target locations, and fundamental changes to the dynamic model needed to improve the match to production data. Results from adopting this workflow in two different deepwater reservoirs are discussed. They not only resulted in reduced uncertainty, but also provided information on key performance indicators that are critical in obtaining a robust history match. In the first case study presented, the deepwater oilfield 4DAHM resulted in a reduction of uncertainty by 20% of original oil in place (OOIP) and by 25% in estimated ultimate recoverable (EUR) oil in the P90 to P10 range estimates. In the second case study, 4DAHM workflow exploited discrepancies between 4D seismic and simulation data to identify features necessary to be included in the dynamic model. Connectivity was increased through newly interpreted interchannel erosional contacts, as well as subseismic faults. Moreover, the workflow provided an improved drilling location, which has the higher probability of tapping unswept oil and better EUR. The 4D filters constrained the suite of reservoir-simulation models and helped to identify four of 24 simulation parameters critical for success. The updated PHM models honor both the production data and 4D interpretations, resulting in reduced uncertainty across the S-curve and, in this case, an increased P50 OOIP of 24% for a proposed infill drilling location, plus a significant cycle-time savings.
Summary Standard history-matching workflows use qualitative 4D seismic observations to assist in reservoir modeling and simulation. However, such workflows lack a robust framework for quantitatively integrating 4D seismic interpretations. 4D seismic or time-lapse-seismic interpretations provide valuable interwell saturation and pressure information, and quantitatively integrating this interwell data can help to constrain simulation parameters and improve the reliability of production modeling. In this paper, we outline technologies aimed at leveraging the value of 4D for reducing uncertainty in the range of history-matched models and improving the production forecast. The proposed 4D assisted-history-match (4DAHM) workflows use interpretations of 4D seismic anomalies for improving the reservoir-simulation models. Design of experiments is initially used to generate the probabilistic history-match simulations by varying the range of uncertain parameters (Schmidt and Launsby 1989; Montgomery 2017). Saturation maps are extracted from the production-history-matched (PHM) simulations and then compared with 4D predicted swept anomalies. An automated extraction method was created and is used to reconcile spatial sampling differences between 4D data and simulation output. Interpreted 4D data are compared with simulation output, and the mismatch generated is used as a 4D filter to refine the suite of reservoir-simulation models. The selected models are used to identify reservoir-simulation parameters that are sensitive for generating a good match. The application of 4DAHM workflows has resulted in reduced uncertainty in volumetric predictions of oil fields, probabilistic saturation S-curves at target locations, and fundamental changes to the dynamic model needed to improve the match to production data. Results from adopting this workflow in two different deepwater reservoirs are discussed. They not only resulted in reduced uncertainty, but also provided information on key performance indicators that are critical in obtaining a robust history match. In the first case study presented, the deepwater oilfield 4DAHM resulted in a reduction of uncertainty by 20% of original oil in place (OOIP) and by 25% in estimated ultimate recoverable (EUR) oil in the P90 to P10 range estimates. In the second case study, 4DAHM workflow exploited discrepancies between 4D seismic and simulation data to identify features necessary to be included in the dynamic model. Connectivity was increased through newly interpreted interchannel erosional contacts, as well as subseismic faults. Moreover, the workflow provided an improved drilling location, which has the higher probability of tapping unswept oil and better EUR. The 4D filters constrained the suite of reservoir-simulation models and helped to identify four of 24 simulation parameters critical for success. The updated PHM models honor both the production data and 4D interpretations, resulting in reduced uncertainty across the S-curve and, in this case, an increased P50 OOIP of 24% for a proposed infill drilling location, plus a significant cycle-time savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.