Non-dysplastic mucosa (ND-) in Barrett's esophagus (BE) shows clonal molecular aberrations, loss of cell cycle control, and other features of "neoplasia." These changes occur prior to morphologic expression of neoplasia (dysplasia). Morphologic evaluation of dysplasia is fraught with error, and, as a result, often leads to false-negative and false-positive diagnoses. Early "crypt dysplasia" is difficult to detect, and is often missed in routine biopsy specimens. Some studies show substantial progression rates of low-grade dysplasia (LGD), and crypt dysplasia, to esophageal adenocarcinoma (EAC). Dysplasia, even when fully developed, may, in certain circumstances, be difficult to differentiate from non-dysplastic (regenerating) BE. Radiofrequency ablation (RFA) is a safe and effective method for removing mucosa at risk of cancer. Given the difficulties of dysplasia assessment in mucosal biopsies, and the molecular characteristics of ND-BE, this technique should be considered for treatment of all BE patients, including those with ND or LGD. Post-ablation neo-squamous epithelium reveals no molecular abnormalities, and is biologically stable. Given that prospective randomized controlled trials of ablative therapy for ND-BE aiming at reducing EAC incidence and mortality are unlikely to be completed in the near future, endoscopic ablation is a valid management option. The success of RFA in achieving safe, uniform, reliable, and predictable elimination of BE allows surgeons to combine fundoplication with RFA. Currently, there is no type of treatment for dysplastic or non-dysplastic BE that achieves a complete response in 100% of patients, eliminates all risk of developing cancer, results in zero adverse events, is less expensive in terms of absolute costs than surveillance, is durable for 20+ years, or eliminates the need for surveillance. Regardless, RFA shows established safety, efficacy, durability, and cost-effective profiles that should be considered in the management of patients with non-dysplastic or low-grade dysplastic BE.