Aims. An alternative to the traditional method for modeling the kinematics of the Earth's rotation is proposed. The purpose of developing the new approach is to provide a self-consistent and simple description of the Earth's rotation in a way that can be estimated directly from observations without using intermediate quantities.Methods. Instead of estimating the time series of pole coordinates, the UT1-TAI angles, their rates, and the daily offsets of nutation, the method for estimating coefficients of the expansion of a small perturbational rotation vector into basis functions is proposed. The resulting transformation from the terrestrial coordinate system to the celestial coordinate system is formulated as the product of the a priori matrix of a finite rotation and an empirical vector of a residual perturbational rotation. In the framework of this approach, the specific choice of the a priori matrix is irrelevant, provided the angles of the residual rotation are small enough to neglect their squares. The coefficients of the expansion into the B-spline and Fourier bases, together with estimates of other nuisance parameters, are evaluated directly from observations of time delay or time range in a single least square solution.Results. This approach was successfully implemented in a computer program for processing VLBI observations. The dataset from 1984 through 2006 was analyzed. The new procedure adequately represents the Earth's rotation, including slowly varying changes in UT1-TAI and polar motion, the forced nutations, the free core nutation, and the high frequency variations of polar motion and UT1.