A simply constructed shock tester, different from existing drop table machines, is developed for high-g level shock environment simulation. The theoretical model, structure design, and working principle of the drop tester are described. A prototype device is set up, where a carbon fiber reinforced polymer with a high specific modulus is used. Using a Brüel & Kjær high-g accelerometer, experiments to verify the validity of the design are carried out and results are given. The maximum acceleration level is in excess of 60,000 g, limited only by the manual driving force.