Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PremisePolypodium pellucidum, a fern endemic to the Hawaiian Islands, encompasses five ecologically and morphologically variable subspecies, suggesting a complex history involving both rapid divergence and rampant hybridization.MethodsWe employed a large target‐capture data set to investigate the evolution of genetic, morphological, and ecological variation in P. pellucidum. With a broad sampling across five Hawaiian Islands, we deciphered the evolutionary history of P. pellucidum, identified nonhybrid lineages and intraspecific hybrids, and inferred the relative influence of geography and ecology on their distributions.ResultsPolypodium pellucidum is monophyletic, dispersing to the Hawaiian archipelago 11.53–7.77 Ma and diversifying into extant clades between 5.66 and 4.73 Ma. We identified four nonhybrid clades with unique morphologies, ecological niches, and distributions. Additionally, we elucidated several intraspecific hybrid combinations and evidence for undiscovered or extinct “ghost” lineages contributing to extant hybrid populations.ConclusionsWe provide a foundation for revising the taxonomy of P. pellucidum to account for cryptic lineages and intraspecific hybrids. Geologic succession of the Hawaiian Islands through cycles of volcanism, vegetative succession, and erosion has determined the available habitats and distribution of ecologically specific, divergent clades within P. pellucidum. Intraspecific hybrids have likely arisen due to ecological and or geological transitions, often persisting after the local extinction of their progenitors. This research contributes to our understanding of the evolution of Hawai'i's diverse fern flora and illuminated cryptic taxa to allow better‐informed conservation efforts.
PremisePolypodium pellucidum, a fern endemic to the Hawaiian Islands, encompasses five ecologically and morphologically variable subspecies, suggesting a complex history involving both rapid divergence and rampant hybridization.MethodsWe employed a large target‐capture data set to investigate the evolution of genetic, morphological, and ecological variation in P. pellucidum. With a broad sampling across five Hawaiian Islands, we deciphered the evolutionary history of P. pellucidum, identified nonhybrid lineages and intraspecific hybrids, and inferred the relative influence of geography and ecology on their distributions.ResultsPolypodium pellucidum is monophyletic, dispersing to the Hawaiian archipelago 11.53–7.77 Ma and diversifying into extant clades between 5.66 and 4.73 Ma. We identified four nonhybrid clades with unique morphologies, ecological niches, and distributions. Additionally, we elucidated several intraspecific hybrid combinations and evidence for undiscovered or extinct “ghost” lineages contributing to extant hybrid populations.ConclusionsWe provide a foundation for revising the taxonomy of P. pellucidum to account for cryptic lineages and intraspecific hybrids. Geologic succession of the Hawaiian Islands through cycles of volcanism, vegetative succession, and erosion has determined the available habitats and distribution of ecologically specific, divergent clades within P. pellucidum. Intraspecific hybrids have likely arisen due to ecological and or geological transitions, often persisting after the local extinction of their progenitors. This research contributes to our understanding of the evolution of Hawai'i's diverse fern flora and illuminated cryptic taxa to allow better‐informed conservation efforts.
Siberian apricot (Prunus sibirica L.) is a woody tree species of ecological, economic, and social importance. To evaluate the genetic diversity, differentiation, and structure of P. sibirica, we analyzed 176 individuals from 10 natural populations using 14 microsatellite markers. These markers generated 194 alleles in total. The mean number of alleles (13.8571) was higher than the mean number of effective alleles (6.4822). The average expected heterozygosity (0.8292) was higher than the average observed heterozygosity (0.3178). Shannon information index and polymorphism information content were separately 2.0610 and 0.8093, demonstrating the rich genetic diversity of P. sibirica. Analysis of molecular variance revealed that 85% of the genetic variation occurred within populations, with only 15% among them. The genetic differentiation coefficient and gene flow were separately 0.151 and 1.401, indicating a high degree of genetic differentiation. Clustering results showed that a genetic distance coefficient of 0.6 divided the 10 natural populations into two subgroups (subgroups A and B). STRUCTURE and principal coordinate analysis divided the 176 individuals into two subgroups (clusters 1 and 2). Mantel tests revealed that genetic distance was correlated with geographical distance and elevation differences. These findings can contribute to the effective conservation and management of P. sibirica resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.