As the most abundant element in the world, hydrogen is a promising energy carrier and has received continuously growing attention in the last couple of decades. At the very moment, hydrogen fuel is imagined as the part of a sustainable and eco-friendly energy system, the “hydrogen grand challenge”. Among the large number of storage solutions, solid-state hydrogen storage is considered to be the safest and most efficient route for on-board applications via fuel cell devices. Notwithstanding the various advantages, storing hydrogen in a lightweight and compact form still presents a barrier towards the wide-spread commercialization of hydrogen technology. In this review paper we summarize the latest findings on solid-state storage solutions of different non-equilibrium systems which have been synthesized by mechanical routes based on severe plastic deformation. Among these deformation techniques, high-pressure torsion is proved to be a proficient method due to the extremely high applied shear strain that develops in bulk nanocrystalline and amorphous materials.