2021
DOI: 10.1109/tps.2021.3073942
|View full text |Cite
|
Sign up to set email alerts
|

High-Intensity Implantation With an Ion Beam’s Energy Impact on Materials

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
8
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(9 citation statements)
references
References 59 publications
0
8
0
1
Order By: Relevance
“…This improves focusing and the ion current density exceeds to 0.06 A/cm 2 , which corresponds to an increase in the ion current density compared to the injection current density by almost 400 times. However, the power density of such a beam does not exceed 2.5 kW/cm 2 , which does not provide the possibility of realizing the synergy of high-intensity ion implantation and its simultaneous energy impact on the surface in accordance with the method described in [7]. An increase in the injection current to 0.3 A and in the ion current density to 1.2•10 -3 A/cm 2 significantly changes the situation.…”
Section: Simulation Of Ion Beam Transport In the Absence Of Its Space...mentioning
confidence: 98%
See 1 more Smart Citation
“…This improves focusing and the ion current density exceeds to 0.06 A/cm 2 , which corresponds to an increase in the ion current density compared to the injection current density by almost 400 times. However, the power density of such a beam does not exceed 2.5 kW/cm 2 , which does not provide the possibility of realizing the synergy of high-intensity ion implantation and its simultaneous energy impact on the surface in accordance with the method described in [7]. An increase in the injection current to 0.3 A and in the ion current density to 1.2•10 -3 A/cm 2 significantly changes the situation.…”
Section: Simulation Of Ion Beam Transport In the Absence Of Its Space...mentioning
confidence: 98%
“…The advantages of the low-energy high-intensity ion implantation (LEHI 3 ) method, providing deep ion doping of materials, are leveled in a number of promising applications by heating the entire sample to high temperatures, at which a significant increase in the material grain structure is observed. A study [7] describes a new method aimed at solving this problem. The essence of the method lies in the use for high-intensity implantation of ion beams with micro-submillisecond duration with a power density from tens to several hundreds of kilowatts per square centimeter.…”
Section: Introductionmentioning
confidence: 99%
“…A new method described in [10] is aimed at solving the problem of maintaining the advantages of high-intensity implantation with simultaneous elimination of high-temperature degradation of the irradiated target microstructure. The essence of the method lies in the use for high-intensity implantation of ion beams with micro-or submillisecond duration with a power density from tens to several hundreds of kilowatts per square centimeter.…”
Section: Introductionmentioning
confidence: 99%
“…В этой связи, необходим другой подход, при котором приповерхностный слой обрабатываемого изделия будет ионномодифицирован при облучении, а основная часть материала не подвергнется воздействию высоких температур. Такой метод можно реализовать за счет синергии высокоинтенсивной ионной имплантации, обеспечивающей ионное легирование металлов и сплавов на глубинах, на порядки превышающие проективные пробеги ионов за счет радиационно-усиленной диффузии атомов, и импульсно-периодического энергетического воздействия на приповерхностный слой, способствующего управляемому изменению структурно-фазового состояния ионно-легированных слоев с сохранением структуры и свойств матричного материала [7]. Для реализации метода высокоинтенсивной имплантации ионов с одновременным энергетическим воздействием на приповерхностный слой предполагается использовать импульсный или импульсно-периодический пучок субмиллисекундной длительности.…”
Section: Introductionunclassified