New Findings
What is the central question of this study?Are the advantages of aerobic interval exercise, resistance exercise and concurrent exercise on the metabolic profile mediated in part through preptin and undercarboxylated osteocalcin (ucOCN)?
What is the main finding and its importance?Glucose was significantly lowered after concurrent exercise and aerobic interval exercise, but serum preptin and insulin were significantly lowered in all three training groups. By contrast, ucOCN and high molecular weight adiponectin increased significantly in all three training groups. These findings support the possible cross‐talk between bone, pancreatic β‐cells and energy metabolism in humans and suggest that preptin and ucOCN may potentially serve as markers of exercise‐induced improvement of metabolism.
Abstract
Preptin is a peptide hormone that plays an important role in the development of obesity by regulation of carbohydrate metabolism. Undercarboxylated osteocalcin (ucOCN) is also linked to the regulation of body energy in that it modulates fat and glucose metabolism. This research aimed to examine the impact of aerobic interval, resistance and concurrent exercise on serum preptin, ucOCN and high molecular weight adiponectin (HMW‐APN) in obese adults with metabolic syndrome (MetS). Forty‐four obese men with MetS were randomized to receive aerobic interval exercise (AIEX, n = 10), resistance exercise (REX, n = 10), or concurrent aerobic interval and resistance exercise (CEX, n = 10), or to act as a non‐exercise control (CON, n = 10) three times a week for 12 weeks. Preptin was reduced more after AIEX and CEX than after REX (89.1% and 87.1% versus 9.6%; P = 0.028 and 0.030, respectively). ucOCN increased significantly only in the CEX (27.5%, P = 0.009) and AIEX (25%, P = 0.025) groups, but HMW‐APN increased significantly in all three training groups (AIEX 145.1%, P < 0.001; CEX 137%, P < 0.001; and REX 59.8%, P = 0.041). After the intervention, the improvement of peak oxygen uptake (V̇O2normalpeak) in the AIEX group (73%) was greater than in the CEX (29.3%) and REX (3.8%) groups. On the other hand, CEX exhibited a greater reduction in glucose, insulin, insulin resistance index and HbA1c than did AIEX and REX. Our study indicates that the reduction in glucose after exercise training (especially AIEX and CEX) may be, somewhat, linked to decreased preptin and raised ucOCN and HMW‐APN.