The generation of energetic electron bunches by the interaction of a short, ultraintense (I>10(19) W/cm(2)) laser pulse with "grating" targets has been investigated in a regime of ultrahigh pulse-to-prepulse contrast (10(12)). For incidence angles close to the resonant condition for surface plasmon excitation, a strong electron emission was observed within a narrow cone along the target surface, with energy spectra peaking at 5-8 MeV and total charge of ∼100 pC. Both the energy and the number of emitted electrons were strongly enhanced with respect to simple flat targets. The experimental data are closely reproduced by three-dimensional particle-in-cell simulations, which provide evidence for the generation of relativistic surface plasmons and for their role in driving the acceleration process. Besides the possible applications of the scheme as a compact, ultrashort source of MeV electrons, these results are a step forward in the development of high-field plasmonics.