2019
DOI: 10.1080/09168451.2019.1608808
|View full text |Cite
|
Sign up to set email alerts
|

High levels of expression of multiple enzymes in the Smirnoff-Wheeler pathway are important for high accumulation of ascorbic acid in acerola fruits

Abstract: Acerola fruits contain abundant ascorbic acid (AsA). The gene expression levels of three upstream enzymes in the primary AsA biosynthesis pathway were correlated with AsA contents in the fruits of two acerola cultivars. Multiple overexpression of the enzymes increased AsA contents, suggesting their high expression is important for high AsA accumulation in acerola fruits and the breeding of AsA-rich plants. Abbreviations: AsA: ascorbic acid; PMI: phosphomannose isomerase; PMM: phosphomannomutase;… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
9
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(12 citation statements)
references
References 9 publications
0
9
0
Order By: Relevance
“…In Arabidopsis , GGP overexpressing lines had a 2.9-fold enhancement of vitamin C, whereas the double-gene transformation with GGP-GPP and GGP-GLDH led to an up to 4.1-fold vitamin C increase [206]. The contemporary overexpression of acerola GGP, GMP, and GME genes in tomato protoplasts caused an increase in vitamin C content, which was approximately four-fold higher than in wild type [207]. A stable transformation with GME, GMP, GGP, and GPP was obtained in tomato through pyramiding, which is a conventional hybridization that is technically achievable and generates stable inherited target genes [208,209].…”
Section: Vitamin C Biofortificationmentioning
confidence: 99%
“…In Arabidopsis , GGP overexpressing lines had a 2.9-fold enhancement of vitamin C, whereas the double-gene transformation with GGP-GPP and GGP-GLDH led to an up to 4.1-fold vitamin C increase [206]. The contemporary overexpression of acerola GGP, GMP, and GME genes in tomato protoplasts caused an increase in vitamin C content, which was approximately four-fold higher than in wild type [207]. A stable transformation with GME, GMP, GGP, and GPP was obtained in tomato through pyramiding, which is a conventional hybridization that is technically achievable and generates stable inherited target genes [208,209].…”
Section: Vitamin C Biofortificationmentioning
confidence: 99%
“…These authors also demonstrated that the co-expression of GMP (enzyme 1) and GGP (enzyme 3) resulted in higher ascorbate levels compared to GMP or GGP alone [219]. Furthermore, co-overexpression of GMP (enzyme 1), GME (enzyme 2), and GGP (enzyme 3) significantly increased ascorbate contents compared to the dual expression of GMP and GGP [219]. These data suggest that expressing the three upstream enzymes in the Smirnoff-Wheeler pathway has a synergistic effect on ascorbate levels.…”
Section: L-ascorbic Acid (Vitamin C)mentioning
confidence: 92%
“…These data suggest that expressing the three upstream enzymes in the Smirnoff-Wheeler pathway has a synergistic effect on ascorbate levels. In contrast, co-overexpression of GGP (enzyme 4), GDH (enzyme 5), and GLDH (enzyme 6) resulted in no differences in ascorbate [219].…”
Section: L-ascorbic Acid (Vitamin C)mentioning
confidence: 95%
See 2 more Smart Citations