Magnetorheological elastomers (MREs) are innovative materials composed of ferromagnetic particles embedded within a polymer matrix, enabling real‐time tunability of mechanical properties through external magnetic fields, thereby generating pronounced mechanical‐magnetic coupling effects. However, the mechanical performance of MREs, particularly their load‐bearing capacities under dynamic conditions, remains constrained by the limitations of conventional matrix materials. In this study, shear‐stiffening gel (SSG), exhibiting viscoelastic mechanical behavior, is incorporated into magnetorheological elastomers to develop magnetorheological shear‐stiffening elastomer (MSSE) through a high‐temperature and high‐pressure vulcanization process. The mechanical‐magnetic coupling behavior of these composites is systematically evaluated utilizing a series of mechanical experiments across varying strain rates. Notably, the interaction between carbonyl iron particles (CIPs) and the molecular chains within the shear‐stiffening matrix significantly enhanced the magnetorheological effects of MSSEs, particularly under dynamic impact loadings. Leveraging the adjustable modulus of MSSEs and drawing inspiration from the microstructural characteristics of beetle exoskeletons, a beam‐structured 3D buffer device is designed. This device demonstrates superior energy absorption capacity, underscoring its potential for advanced flexible protection applications.