Background: Enterobacter cloacae (EC) is a commonly occurring opportunistic pathogen and is responsible for causing various infections in humans. Owing to its inducible chromosomal AmpC β-lactamase (AmpC), EC is inherently resistant to the 1st- and 2nd- generation cephalosporins. However, whether β-lactams antibiotics enhance EC resistance remains unclear.Results: In this study, we found that subinhibitory concentrations (SICs) of cefazolin (CFZ) and imipenem (IMP) are able to advance the expression of AmpC and improve its resistance towards β - lactams through NagZ in EC clinical isolate. Our work indicate that AmpC manifested a substantial upregulation in EC in response to SICs of CFZ and IMP. In nagZ knockout EC (ΔnagZ), we found that the resistance to β - lactam antibiotics was rather weakened and the effect of CFZ and IMP on induction of AmpC was completely abrogated. Ectopic expression of NagZ can rescue the induction effect of CFZ and IMP on AmpC and enhance resistance in ΔnagZ. More importantly, CFZ and IMP have the potential to bring about the target genes expressions of AmpR in a NagZ-dependent manner.Conclusions: Our findings show that NagZ is a critical determinant for CFZ and IMP to promote AmpC expression and improve resistance and that CFZ and IMP should be used with caution since they may aggravate EC resistance. At the same time, this study further improves our understanding of resistance mechanisms in EC.