Studies of the genetic base and polymorphism of bread wheat cultivars aimed at identifying alleles of genes associated with high baking and other economically valuable traits seem to be relevant, since bread wheat, along with all representatives of the Triticeae tribe, has a huge genetic potential for creating cultivars with high technological and rheological properties of grain flour. The aim of this study was sequencing and analysis of the nucleotide sequences of the Glu-B1-1 gene, and analysis of the predicted amino acid sequences of its protein product in three cultivars of bread wheat. Thus, in the course of genotyping cultivars and lines of bread wheat for the Glu-B1-1 gene, in the cultivars ‘Avesta’, ‘Leningradka krupnozernaya’ and line C-75094, previously undescribed changes in the size of amplifiable regions of the Glu-B1-1 gene for high-molecular-weight glutenins were found. Comparative analysis of the nucleotide sequences of these genes with known sequences showed the presence of two deletions in ‘Avesta’ and C-75094 and the presence of seven single-nucleotide substitutions in ‘Leningradka krupnozernaya’. Alignment of the predicted Glu-B1 amino acid sequences of the studied accessions and the standard cultivar carrying the Glu-B1-a allele showed that deletions in the amino acid sequences of ‘Avesta’ and C-75094 accessions are localized in the central domain of the protein and affect the amount of tri-, hexa-, and nonapeptides, and in ‘Leningradka krupnozernaya’, a decrease in GQQ and PGQGQQ by one unit was revealed. In addition, substitutions of five amino acids were found in ‘Leningradka krupnozernaya’. Thus, we have found previously undescribed deletions and substitutions in the nucleotide sequences of the Glu-B1-1 gene for high-molecular-weight glutenins, which lead to changes in amino acid sequences in functionally important regions, namely, in the central domains of protein molecules. The identified mutations can be used for genotyping bread wheat cultivars.