The nonmuscle myosin IIA heavy chain (Myh9) is strongly associated with adhesion structures of osteoclasts. In this study, we demonstrate that during osteoclastogenesis, myosin IIA heavy chain levels are temporarily suppressed, an event that stimulates the onset of cell fusion. This suppression is not mediated by changes in mRNA or translational levels but instead is due to a temporary increase in the rate of myosin IIA degradation. Intracellular activity of cathepsin B is significantly enhanced at the onset of osteoclast precursor fusion, and specific inhibition of its activity prevents myosin IIA degradation. Further, treatment of normal cells with cathepsin B inhibitors during the differentiation process reduces cell fusion and bone resorption capacity, whereas overexpression of cathepsin B enhances fusion. Ongoing suppression of the myosin IIA heavy chain via RNA interference results in formation of large osteoclasts with significantly increased numbers of nuclei, whereas overexpression of myosin IIA results in less osteoclast fusion. Increased multinucleation caused by myosin IIA suppression does not require RANKL. Further, knockdown of myosin IIA enhances cell spreading and lessens motility. These data taken together strongly suggest that base-line expression of nonmuscle myosin IIA inhibits osteoclast precursor fusion and that a temporary, cathepsin B-mediated decrease in myosin IIA levels triggers precursor fusion during osteoclastogenesis.The final stages of osteoclastogenesis involve fusion of differentiated precursors from the monocyte/macrophage lineage (1). Although the membrane structural components regulating preosteoclast fusion are not well understood, in recent years a number of candidate cell surface molecules have been implicated, including receptors CD44 (2, 3), CD47 and its ligand macrophage fusion receptor (also known as signal regulatory protein ␣) (4 -6), the purinergic receptor P2X 7 (7), and the disintegrin and metalloproteinase ADAM8 (8). A recently identified receptor, the dendritic cell-specific transmembrane protein, is essential for osteoclast fusion both in vitro and in vivo (9, 10). More recently, the d2 subunit of proton-translocating vacuolar proton-translocating ATPases, a membrane subunit isoform expressed predominantly in osteoclasts, similarly was demonstrated to be required for fusion in vitro and in vivo (11). However, elucidation of the mechanisms by which these molecules may mediate cell fusion has proved to be difficult.The mammalian class II myosin family consists of distinct isoforms expressed in skeletal, smooth, and cardiac muscle, as well as three nonmuscle forms designated IIA, IIB,. Although all class II molecules are composed of two heavy chains, two essential light chains, and two regulatory chains, their unique activities are a function of their particular heavy chain isoforms. Although the nonmuscle heavy chain isoforms share extensive structural homology, they have been shown to demonstrate distinct patterns of expression (15-18), enzyme kinetics and activ...