High-Order Isogeometric Methods for Compressible Flows. II. Compressible Euler Equations
Matthias Möller,
Andrzej Jaeschke
Abstract:This work extends the high-resolution isogeometric analysis approach established in [1] to the equations of gas dynamics. The group finite element formulation is adopted to obtain an efficient assembly procedure for the standard Galerkin approximation, which is stabilized by adding artificial viscosities proportional to the spectral radius of the Roe-averaged flux-Jacobian matrix. Excess stabilization is removed in regions with smooth flow profiles with the aid of algebraic flux correction [2]. The underlying … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.