The trend in the industrial power electronics electrical drives is to reach high power density and high efficiency in variable load conditions at cost-effective unwasteful designs. Currently, motors with permanent magnets (such as IPMSM and PMaSynRM) are of great interest because of compactness, low losses, and high torque capability. The performance of a drive system can be predicted with a motor electromagnetic authentic nonlinear model. In this paper, a novel, fast, and precise motor model of PMaSynRM based on virtual reluctance (VR) is proposed. It takes into account the cross saturation, winding distribution, space harmonics, slotting effect, and stepped skewing. The virtual reluctances are identified by finite element analysis (FEA) and implemented in the timestepping simulation. The flux inversion is not required. The proposed concept is useful for the rotating field or phase quantities (for open phase simulation). The model is also discretized for SiL and HiL applications. Finally, the validation in FEA and experimental setup was performed.