We demonstrate a laser frequency stabilization method with large tuning range to stabilize a UV laser by installing piezoelectric ceramic actuators into a Fabry–Pérot cavity with an ultra-low expansion spacer. To suppress piezoelectric drift, a two-layer symmetrical structure is adopted for the piezoelectric actuator, and a 14.7 GHz tuning range is achieved. The short-term drift of the piezoelectric ceramics caused by temperature and creep is eliminated, and the long-term drift is 0.268 MHz/h when the Fabry–Pérot cavity is sealed in a chamber without a vacuum environment. The long-term frequency drift is mainly caused by stress release and is eliminated by compensating the cavity voltage with an open loop. Without the need for an external reference or a vacuum environment, the laser frequency stabilization system is greatly simplified, and it can be extended to wavelengths ranging from ultraviolet to infrared. Owing to its simplicity, stability, and large tuning range, it is applicable in cold atom and trapped ion experiments.