2023
DOI: 10.1007/s00500-023-08209-6
|View full text |Cite
|
Sign up to set email alerts
|

High-performance image forgery detection via adaptive SIFT feature extraction for low-contrast or small or smooth copy–move region images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…Sheng Zhang and Wei Zhu [9] proposed a SIFT matching algorithm combined with RANSAC; this method uses the SIFT algorithm to extract and match the feature points of an image sequence, and then uses the RANSAC algorithm to eliminate the mismatched points, which improves the matching correctness rate to a certain extent, but there is also the problem of high resource occupancy in the process of descriptor generation. J. S. Sujin et al improved image quality by adjusting the contrast thresholding and scaling the image, which they achieved by adjusting the size and contrast thresholding factors to produce a sufficient number of keypoints and enhance the correctness of the feature point matching, even in smooth, low-contrast, or small regions [10].…”
Section: Introductionmentioning
confidence: 99%
“…Sheng Zhang and Wei Zhu [9] proposed a SIFT matching algorithm combined with RANSAC; this method uses the SIFT algorithm to extract and match the feature points of an image sequence, and then uses the RANSAC algorithm to eliminate the mismatched points, which improves the matching correctness rate to a certain extent, but there is also the problem of high resource occupancy in the process of descriptor generation. J. S. Sujin et al improved image quality by adjusting the contrast thresholding and scaling the image, which they achieved by adjusting the size and contrast thresholding factors to produce a sufficient number of keypoints and enhance the correctness of the feature point matching, even in smooth, low-contrast, or small regions [10].…”
Section: Introductionmentioning
confidence: 99%