GaAsSb alloys lattice-matched to InP substrate have been used in various electronic and optoelectronic applications due to their highly desirable band alignment for high-speed double heterojunction bipolar transistors. There is however an issue with GaAsSb alloys, composed approximately of 50% As and 50% Sb, lattice-matched to an InP substrate; it exhibits a miscibility gap, which is a significant problem for crystal growth. This paper addresses the effect of substrate tilting on the material properties of GaAsSb alloys closely lattice-matched to InP substrates by molecular beam epitaxy (MBE). InP(100) substrates tilted 0°off-(on-axis), 2°off-, 3°off-, and 4°off-axis were used for MBE growth, then the material qualities of GaAsSb epitaxial layers were compared using various techniques, including high resolution X-ray diffraction, photoluminescence (PL), Raman scattering, and transmission-line measurements (TLM). Substrate tilting improved the GaAsSb alloys with crystalline quality, shown by a narrower x-ray linewidth and enhanced optical quality as evidenced by a strong PL peak. The results of TLM show that the lowest sheet resistance was achieved at a 2° off-axis tilt. The results are expected to be applicable in devices that incorporate GaAsSb in the active layer grown by MBE.