Bone-like apatite coating fabricated by biomineralization process is a facile way for surface modification of porous scaffolds to improve interfacial behaviors and thus facilitate cell attachment, proliferation, and differentiation for bone tissue engineering. In this study, a Sr-containing calcium phosphate solution was made and used to construct a thick layer of Sr-doped bone-like apatite on the surface of 3D printed scaffolds via biomineralization process. Importantly, Sr-doped bone-like apatite could form and fully cover the 3D printed scaffolds surface in hours. The characterization results indicated that Sr2+ ions successfully replaced Ca2+ ions in bone-like apatite and the molar ratio of Sr/(Ca+Sr) was up to 8.2%. Furthermore, the Sr-doped apatite coating increased the compressive strength and Young’s modulus of composite scaffolds. The compatibility and bioactivity of mineralized scaffolds were evaluated by cell attachment, proliferation, and differentiation of MC3T3-E1 cells. It was found that Sr-doped apatite coating could gradually release Sr2+ ions and further promote cell attachment, proliferation rate, and the expression of alkaline phosphatase activity and osteogenic related genes, such as collagen type I (Col I), Runt-related transcription factor 2 (Runx-2), osteopontin, and osterix. Therefore, the Sr-doped apatite coating fabricated by this facile and rapid biomineralization process offers a new strategy to modify 3D printed porous scaffolds with significantly improved mechanical and biological properties for bone tissue engineering applications.