Organic semiconducting single crystals are perfect for both fundamental and application‐oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low‐temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V−1 s−1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single‐crystal electronic devices, including field‐effect transistors, phototransistors, p‐n heterojunctions, and circuits, are summarized. Organic two‐dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state‐of‐the‐art overview of organic single‐crystal electronics, with their challenges and prospects, is also provided.