2021
DOI: 10.48550/arxiv.2111.04067
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

High Performance Out-of-sample Embedding Techniques for Multidimensional Scaling

Abstract: The recent rapid growth of the dimension of many datasets means that many approaches to dimension reduction (DR) have gained significant attention. High-performance DR algorithms are required to make data analysis feasible for big and fast data sets. However, many traditional DR techniques are challenged by truly large data sets. In particular multidimensional scaling (MDS) does not scale well. MDS is a popular group of DR techniques because it can perform DR on data where the only input is a dissimilarity fun… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?