Cryptocurrency has as of late pulled in extensive consideration in the fields of economics, cryptography, and computer science due to it is an encrypted digital currency, peerto-peer virtual forex produced using codes, and it is much the same as another medium of the trade like real cash. This study mainly focuses to combine the Deep Learning with Data parallelism and Cloud Computing Machine learning engine as "hybrid architecture" to predict new Cryptocurrency prices by using historical Cryptocurrency data. The study has exploited 266,776 of Cryptocurrency prices values from the pilot experiment, and Deep Learning algorithm used for the price prediction. The four hybrid architecture models, namely, (i) standalone PC, (ii) Cloud computing without data parallelism (GPU-1), (iii) Cloud computing with data parallelism (GPU-4), and (iv) Cloud computing with data parallelism (GPU-8) introduced and utilized for the analysis. The performance of each model is evaluated using different performance evaluation parameters. Then, the efficiency of each model was compared using different batch sizes. An experimental result reveals that Cloud computing technology exposes new era by performing parallel computing in IoT to reduce computation time up to 90% of the Deep Learning algorithm-based Cryptocurrencies price prediction model and many other IoT applications such as character recognition, biomedical field, industrial automation, and natural disaster prediction.