Herein, a facile, catalyst-free, and dry topochemical transformation strategy for transforming the Bi2S3 nanowires to the Bi2Se3 nanowires, which has been realized through an atmospheric pressure high-temperature selenization treatment, has been developed. The complete topochemical transformation has been verified by combining x-ray diffraction, Raman spectroscopy, energy dispersive spectrometer, x-ray photoelectron spectroscopy, transmission electron microscopy, and selected area electron diffraction measurements. Systematical optical characterizations, including polarization-resolved optical microscopy images and polarization-dependent Raman spectra, have revealed the strong anisotropy of the Bi2Se3 nanowires. Furthermore, finite-different time-domain simulations have consolidated that the Bi2Se3 nanowires possess highly anisotropic absorption cross sections across the ultraviolet to far infrared spectral range, laying a solid foundation for the realization of ultra-broadband polarized optoelectronic applications. On the whole, this pioneering study depicts a unique avenue for topological material design accompanied with the integration of additional functionalities beyond the intrinsic counterparts, opening up an attractive research field for polarized photonics and optoelectronics.