Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO4/PC (0.1 M)). The homopolymer and copolymer films were analyzed by Fourier transform infrared spectroscopy (FT-IR), color-coordinate and colorimetric methods, cyclic voltammetry (CV), spectroelectrochemistry (SEC), and UV–visible spectroscopy (UV-Vis). Homopolymer poly(3,4-ethylenedioxythiophene) (PEDOT) and the P(EDOT-co-Pr) copolymer were investigated, which included examining their colorimetric, electrochemical, and electrochromic characteristics. The color shifts resulting from redox reactions of the polymers were also observed. The copolymers with different monomer concentrations achieved multicolor shifts, such as light purple, dark blue, dark red, green, and earthy yellow. Moreover, P(EDOT-co-Pr) had a small optical bandgap (1.74–1.83 eV), excellent optical contrast (31.68–45.96%), and high coloring efficiency (350–507 cm2 C−1). In particular, P(EDOT1-co-Pr3) exhibited outstanding cycling stability, retaining 91% of its initial optical contrast after cycling for 10,000 s, and it is expected to be a promising candidate copolymer for electrochromic applications.