There is a significant interest in valorizing swine manure that is produced in enormous quantities. Therefore, considering the high moisture content in swine manure, the objective of this research was to convert manure slurry into hydrochars via hydrothermal carbonization and analyze the yields, pH, energy contents, and thermal and oxidation kinetic parameters. Experiments were performed in triplicate in 250 mL kettle reactors lined with polypropylene at 180 °C, 200 °C, 240 °C, 220 °C, and 260 °C for 24 h. Analyses of the results indicated that the process temperature affected the hydrochar yields, with yield generally decreasing with increasing temperature, but it had little effect on the composition of the hydrochar. The hydrochars were found to have higher volatile contents and H/C and O/C ratios and about 85% of the energy compared to coal. However, the presence of high fraction (35–38%) of ash in hydrochars is a serious concern and needs to be addressed before the complete utilization of hydrochars as fuels. The surface characterization of hydrochars coupled with wet chemistry experiments indicated that hydrochars were equipped with nitrogen functional groups with points of zero charges between 6.76 and 7.85, making them suitable as adsorbents and soil remediation agents and energy storage devices.