Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recent advances in metadevices, featuring complex subwavelength metastructures, have dramatically transformed the control and manipulation of electromagnetic waves. However, the inherently narrow operational bandwidth of these devices, stemming from their wavelength‐specific meta‐atoms, restricts their application in rapidly advancing fields such as the Internet of Things and advanced intelligent systems. Here, a novel hyperband synergistic metadevice is introduced, realized through a comprehensive multi‐scale meta‐atom architecture. The complementary metal‐oxide‐semiconductor (CMOS)‐compatible prototype integrates the distinct properties of double‐walled carbon nanotubes with advanced interlayer and intralayer coupling mechanisms, coherently combining nanoscale, microscale, and macroscale meta‐atoms. This prototype is thus adept at operating across a wide electromagnetic spectrum, spanning from the centimeter‐wavelength microwave band to the hundred nanometer‐wavelength visible and infrared optical band. Significantly, this singular device synergistically delivers three critical functionalities: selective microwave absorption, efficient terahertz beam steering, and enhanced optical transparency. These result signifies a breakthrough in hyperband electromagnetic device engineering, leading to compact, versatile, intelligent electromagnetic platforms.
Recent advances in metadevices, featuring complex subwavelength metastructures, have dramatically transformed the control and manipulation of electromagnetic waves. However, the inherently narrow operational bandwidth of these devices, stemming from their wavelength‐specific meta‐atoms, restricts their application in rapidly advancing fields such as the Internet of Things and advanced intelligent systems. Here, a novel hyperband synergistic metadevice is introduced, realized through a comprehensive multi‐scale meta‐atom architecture. The complementary metal‐oxide‐semiconductor (CMOS)‐compatible prototype integrates the distinct properties of double‐walled carbon nanotubes with advanced interlayer and intralayer coupling mechanisms, coherently combining nanoscale, microscale, and macroscale meta‐atoms. This prototype is thus adept at operating across a wide electromagnetic spectrum, spanning from the centimeter‐wavelength microwave band to the hundred nanometer‐wavelength visible and infrared optical band. Significantly, this singular device synergistically delivers three critical functionalities: selective microwave absorption, efficient terahertz beam steering, and enhanced optical transparency. These result signifies a breakthrough in hyperband electromagnetic device engineering, leading to compact, versatile, intelligent electromagnetic platforms.
Arbitrarily designed resonant-based metasurfaces are particularly attractive and present a unique platform for biosensing applications owing to their ability to confine light to nanoscale regions and their spectral selectivity. In this study, we experimentally demonstrate a metasurface sensor based on terahertz fingerprint spectroscopy that enables the specific recognition of trace samples. The results of simulations and experiments show that this metasurface sensor detects glycine, L-arginine, and L-threonine, respectively, with different resonance coupling. The frequency shift of the resonance peak of the metasurface sensor was the largest when the resonance peak matched the fingerprint peak of the sample, with a maximum of 123 GHz for detecting L-threonine. Therefore, combining the frequency shift of the resonance peaks with the fingerprint spectrum of the sample can achieve specific recognition of the sample. This study provides new ideas for specific recognition of samples using metasurface sensors in biomedicine, food safety, and other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.