Huge amounts of radionuclides, particularly radiocesium, were discharged from the Fukushima Daiichi Nuclear Power Plant (FDNPP), and widespread of contamination of the land, including paddy fields, was observed. Because rice is a staple food in Japan, contamination of paddy fields is a serious problem, and practical countermeasures to reduce radiocesium contamination of rice are urgently required. Potassium (K) fertilization was previously shown to be an effective countermeasure in fields contaminated by the Chernobyl accident, but researchers did not study the effects on rice (Oryza sativa L.). In the present study, we performed urgent field experiments to test the use of K fertilization, as well as other soil amendments, to reduce radiocesium contamination of rice. We found that K fertilization was an effective and practical countermeasure to reduce radiocesium uptake by rice from several soil types in Japanese paddy rice culture. Other treatments, including the application of expanded vermiculite or manure, were effective, and the effect appears to be explained by their K content. Based on these results, the recommended level of exchangeable soil potassium to lower the radiocesium content of rice to acceptable levels is about 200 mg K kg -1 soil before the usual fertilization. This K fertilizer application criterion was applied in a wide, low-contaminated area from the 2012 cropping season, and satisfactory results have been obtained generally.