“…3 Comparison of hardness depth-profiles of the mono, binary and (HfTaZrNb)C high-entropy transition metal carbides [37] 图 4 五组元高熵陶瓷的硬度对比 [25,[27][28][29]31,34,46] Fig. 4 Comparison of hardness for different series of quinary high-entropy ceramics [25,[27][28][29]31,34,46] 由于高熵陶瓷体系庞杂, 采用理论预测或者模 拟计算的方式筛选高性能的高熵陶瓷体系显得尤为 重要。 经常用价电子浓度(Valence Electron Concentration, VEC)理论预测材料的力学性能, 特别是非金 属 p 轨道和金属 d 轨道之间的 σ 键状态决定了材料 抵抗剪切应力和形变的能力 [47] 。对于高熵合金, 计 算结果表明价电子浓度是影响合金延展性的关键因 素之一, 同时也可决定高熵合金的相稳定性和相结 构 [48][49] 。这种利用价电子浓度的评价方法, 在过渡 金属碳化物和氮化物三元固溶体材料(如 TiCN、 ZrNbC 和 ZrNbN)中也得到了广泛应用。当 VEC 值 处于 8~9 之间时, 过渡金属碳化物或氮化物三元固 溶 体 材 料 的 弹 性 模 量 和 硬 度 达 到 最 大 值 [47,50] 。 Harrington 等 [31] 进一步将价电子浓度评价方法应用 到高熵陶瓷, 发现高熵陶瓷的硬度和弹性模量与价 电子浓度之间也存在类似的关系。当 VEC 等于 8.6 时, 硬度达到最大, 其中(TiZrHfTaW)C 的硬度最高, 可达到 33 GPa。 但随着 VEC 值继续增大, 材料的硬 度值降低, 弹性模量增大。Yang 等 [26] 基于第一性原 理计算了 (TiZrHfNbTa)C [39] 。随着高熵陶瓷组元的增加, 在 多 组 元 高 混 合 熵 效 应 下 , 热 导 率 进 一 步 下 降 。 (TiZrHfNbTa)C 高熵陶瓷的热导率仅为 6.45 W/(m•K) (29.5 ℃ ), 远低于 HfC 等超高温陶瓷的热导率 (29.3 W/(m•K)) [25] ; 而孔隙率为 80.99%的(TiZrHfNbTa)C 多 孔 高 熵 陶 瓷 , 其 热 导 率 可 进 一 步 降 低 到 0.39 W/(m•K) [30] 。因此, 过渡金属碳化物高熵陶瓷 在超高温保温/隔热材料方面具有潜在的应用。 在抗氧化性能方面, (TiZrHfNbTa)C 高熵陶瓷粉 体的抗氧化性能相比其对应的五种碳化物混合粉体 具有更好的抗氧化性。(TiZrHfNbTa)C 高熵陶瓷在 800~1500 ℃的氧化行为遵循抛物线速率定律, 氧 化过程中产生的分层结构有效提高了陶瓷的抗氧化 性能。此外, (TiZrHfNbTa)C 高熵陶瓷也表现出优异 的抗水氧腐蚀性能, 在 1200 ℃和 90% RH 水氧环 境中的增重仅为 6.6×10 -2 kg/m 2 , 明显低于相对应的 固溶体陶瓷体系, 特别是较纯相 ZrC 陶瓷降低了一 个数量级, 结果如图 5 所示 [51] [52] Fig. 5 Comparison of weight gain per unit area as a function of exposure time for (TiZrHfNbTa)C high-entropy ceramic and related (TiZrHNbTa)C, (TiZrNb)C, ZrC ceramic [52] 高仅为 92.4%; 随后将少量 C 添加到原始硼化物粉 体中, 利用原位反应有效降低了氧化物杂质的残留, 采用反应闪烧放电等离子烧结工艺短时间制备了致 密 的 (TiZrHfNbTa)B 2 高 熵 陶 瓷 , 致 密 度 可 达 到 99.3%, 但材料组织中依然发现氧化物杂质, 并且 存在部分未反应完全的碳 [42]…”